Discipline:- CIVIL ENGG.	Semester:-	Name of the Teaching Faculty SWAGATIKA SAMAL (LECTURER)
Subject:-	No of	Semester From:- 14/07/2025 To:- 15/11/2025
MECHANICS OF	Days/per	14/07/2023 10,2 13/11/2023
MATERIAL(CEPC205)	Week Class	No of Weeks:- 18
	Allotted :-04	No of Freeks, 15
Week	Class Day	Theory/ Practical Topics
1 st	100	UNIT-I Centre of Gravity and Moment of Inertia
	1 st	Definition of centre of gravity -Centre of gravity of of Symmetrical shapes solid / hollow Square)
	2nd	Problem practice
	3rd	Center of gravity of rectangular, circular, I Section
	4th	Problem practice
	1st	Moment of inertia (M.I.): Definition, M.I. of plane lamina,
	2nd	Radius of gyration, section mod- ulus,
2 nd	3rd	Parallel and Perpendicular axes theorems (without derivations)
	4th	Problem practice
	1st	Problem practice
	2nd	M.I. of rectangle, square, circle, semicircle
3 rd	3rd	M.I ofquarter circle and triangle section (without derivations).
3		Problem practice
	1st	M.I. of symmetrical and unsymmetrical I-section
	2nd	M.I ofChannel section, T-section, Angle section
4 th		Hollow sections and built up sections about centroidal axes and any
	3rd	other reference axis.
	⊿ th	Problem practice
	1st	Problem practice
5 th	2nd	Polar Moment of Inertia of solid circular sections
		UNIT-II Simple Stresses and Strains
	3rd	Definition of rigid, elastic and plastic bodies
	4th	Deformation of elastic body under various forces,
	1st	Definition of stress, strain, elasticity,
6 th	2nd	Hook's law, Elastic limit,
	3rd	Modulus of elastic-ity.
	314	Type of Stresses-Normal, Direct, Bending and Shear and nature of
	4th	stresses
	1st	Tensile and Compressive stresses
7 th		·
	2nd	Standard stress strain curve for tor steel bar under tension
	3rd	Yield stress, Proof stress, Ultimate stress
	4th	Strain at various critical points
8 th	1 st	Percentage elongation and Factor of safety.
	2nd	Problem practice
	3rd	Deformation of body due to axial force
10 m	4th	forces applied at intermediate sections,
9 th	1 st	Maximum and minimum stress induced, Composite section under axia loading
	2nd	Concept of temperature stresses and strain
	3rd	Stress and strain developed due to temperature variation in homogeneous simple bar (no composite section)
	4th	Longitudinal and lateral strain, Modulus of Rigidity, Poisson's ratio
	V 4	OF ENGINEER IN

	1st	Biaxial and tri-axial stresses, volumetric strain, change in volume
10 th	2nd	Relation between modulus of elasticity, modulus of rigidity and bulk modulus (without derivation).
	3rd	COMPLEX STRESSES AND STRAINS: Principal stresses and strains:
	4th	Occurrence of normal and tangential stresses - Concept of Principal
		stress and Principal Planes
11 th		major and minor principal stresses and their orientations – stresses on a given
	1 st	plane
	2 nd	shear and normal stress components on any inclined plane
	3rd	Mohr's circle and its use in solving problems on complex stresses
	4th	Numerical problems
12 th	1st	UNIT-IIIShear Force and Bending Moment
	2nd	Types of supports, beams and loads
	3rd	Concept and definition of shear force and bending moment
	4th	Relation between load, shear force and bending moment (without derivation).
	1 st	Shear force and bending moment diagram for cantilever and simply supported beams subjected to point loads,
	2nd	uniformly distributed loads and couple (combination of any two types of
13 th		loading), point of contra flexure.
Again to a	3rd	UNIT-IV Bending and Shear Stresses in beams
		Concept and theory of simple bending
	4th	assumptions, flexural equation (without derivation),
14 th	1 st	Problem practice
		bending stresses and their nature, bending stress distribution diagram.
	2 nd	Concept of moment of resistance and simple numerical problems using flexural equation.
	3rd	Shear stresss equation (without derivation),
		relation between maximum and average shear stress for rectangular and
	4 th	circular section, shear stress distribution diagram.
15 th	1st	Problem practice
	2 nd	Shear stress distribution for square, rectangular, circle, hollow, square
	3rd	rectangular, circular, angle sections, channel section, I-section
	4th	Simple numerical problems based on shear equation.
16 th	. ct	UNIT-V COLUMNS
	1 st	Concept of member
	2nd	short and long column, Effective length,
	3rd	Radius of gy- ration, Slenderness ratio,
	4th	Types of end condition for columns, Buckling of axially loadedcolumns
17 th	1 st	Euler's theory, assumptions made in Euler's theory and its limitations
	2nd	Application of Eu-ler's equation to calculate buckling load
	3rd	Problem practice
	4 th	Problem practice
18 th	1 st	Rankine's formula and its application to calculate crippling load.
	2nd	its application to calculate crippling load.
	3rd	Concept of working load/safe load, design load and factor of safety.
	4th	Problem practice

c. samal LECTURER

JIET POLYTECH 1112125

11.07.28

SR.LECTURER

Sr. Lecturer
Civil Engg. Dept.
G. Transv..lagatour,Ctc